The Rab11-family interacting proteins reveal selective interaction of mammalian recycling endosomes with the Toxoplasma parasitophorous vacuole in a Rab11- and Arf6-dependent manner

Mol Biol Cell. 2022 May 1;33(5):ar34. doi: 10.1091/mbc.E21-06-0284. Epub 2022 Mar 11.

Abstract

After mammalian cell invasion, the parasite Toxoplasma multiplies in a self-made membrane-bound compartment, the parasitophorous vacuole (PV). We previously showed that Toxoplasma interacts with many host cell organelles, especially from recycling pathways, and sequestrates Rab11A and Rab11B vesicles into the PV. Here, we examine the specificity of host Rab11 vesicle interaction with the PV by focusing on the recruitment of subpopulations of Rab11 vesicles characterized by different effectors, for example, Rab11-family interacting roteins (FIPs) or Arf6. Our quantitative microscopic analysis illustrates the presence of intra-PV vesicles with FIPs from class I (FIP1C, FIP2, FIP5) and class II (FIP3, FIP4) but to various degrees. The intra-PV delivery of vesicles with class I, but not class II, FIPs is dependent on Rab11 binding. Cell depletion of Rab11A results in a significant decrease in intra-PV FIP5, but not FIP3 vesicles. Class II FIPs also bind to Arf6, and we observe vesicles associated with FIP3-Rab11A or FIP3-Arf6 complexes concomitantly within the PV. Abolishing FIP3 binding to both Rab11 and Arf6 reduces the number of intra-PV FIP3 vesicles. These data point to a selective process of mammalian Rab11 vesicle recognition and scavenging mediated by Toxoplasma, suggesting that specific parasite PV proteins may be involved in these processes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • ADP-Ribosylation Factor 6
  • Animals
  • Endosomes / metabolism
  • HeLa Cells
  • Humans
  • Mammals / metabolism
  • Protein Binding
  • Toxoplasma* / metabolism
  • Vacuoles / metabolism
  • rab GTP-Binding Proteins / metabolism

Substances

  • ADP-Ribosylation Factor 6
  • rab GTP-Binding Proteins