Effects of Phragmites australis Shoot Remainder Silage on Growth Performance, Blood Biochemical Parameters, and Rumen Microbiota of Beef Cattle

Front Vet Sci. 2022 Feb 22:9:778654. doi: 10.3389/fvets.2022.778654. eCollection 2022.

Abstract

The objective of the present study was to assess the effects of replacing corn silage with Phragmites australis shoot remainder (PSR) silage on intake, growth performance, serum biochemical parameters, and rumen microbial diversity of growing-finishing beef. Fifteen Angus beef cattle with an average body weight of 253 ± 2.94 kg were randomly divided into three groups (five replicas vs. each group vs. Angus beef cattle). The three treatments were group A fed 60% PSR silage + 40% concentrate, group B fed 30% PSR silage + 30% corn silage + 40% concentrate, and group C fed 60% corn silage + 40% concentrate. The adaptation period was 15 days, and the trial period lasted for 45 days. Results showed that the ADG was significantly higher, and FCR was significantly lower both in groups A and B compared with group C. The results of serum biochemical parameters showed that the concentration of GLU was significantly lower in group B than both groups A and C. Microbial diversity results showed that the OTUs, Shannon, Chao1, and ACE indices were significantly lower in group A compared with groups B and C. At the phyla level, the relative abundances of Tenericutes and Melainabacteria had significant differences among the three groups, and the relative abundances of Papillibacter, Anaeroplasma, and Anaerovorax had significant differences among the three groups at the genus level. Additionally, Rikenellaceae was the unique biomarker among the three groups. Furthermore, the results of function prediction showed that the gene families associated with metabolism of cofactors and vitamins, cellular processes and signaling, metabolism, biosynthesis of other secondary metabolites, infectious diseases, signaling molecules and interaction, nervous system, and digestive system were significantly decreased, while lipid metabolism was dramatically increased from groups A to C at KEGG level 2. At KEGG level 3, 11 metabolic pathways were significantly influenced among the three groups. In summary, these findings indicated that PSR silage substituted the corn silage totally or partially improved the growth performance, and altered the rumen microbial composition and diversity and the corresponding change in prediction function of rumen bacteria in Angus beef cattle.

Keywords: Phragmites australis feed; beef cattle; growth performance; rumen bacterial function; rumen microbiota.