Effects of Extended Viewing Distance on Accommodative Response and Pupil Size of Myopic Adults by Using a Double-Mirror System

Int J Environ Res Public Health. 2022 Mar 3;19(5):2942. doi: 10.3390/ijerph19052942.

Abstract

Purposes: This study discussed the accommodative response and pupil size of myopic adults using a double-mirror system (DMS). The viewing distance could be extended to 2.285 m by using a DMS, which resulted in a reduction and increase in the accommodative response and pupil size, respectively. By using a DMS, the reduction of the accommodative response could improve eye fatigue with near work. Method: Sixty subjects aged between 18 and 22 years old were recruited in this study, and the average age was 20.67 ± 1.09. There were two main steps in the experimental process. In the first step, we examined the subjects’ refraction state and visual function, and then fitted disposable contact lenses with a corresponding refractive error. In the second step, the subjects gazed at an object from a viewing distance of 0.4 m and at a virtual image through a DMS, respectively, and the accommodative response and pupil size were measured using an open field autorefractor. Results: When the subjects gazed at the object from a distance of 0.4 m, or gazed at the virtual image through a DMS, the mean value of the accommodative response was 1.74 ± 0.43 or 0.16 ± 0.47 D, and the pupil size was 3.98 ± 0.06 mm or 4.18 ± 0.58 mm, respectively. With an increase in the viewing distance from 0.4 m to 2.285 m, the accommodative response and pupil size were significantly reduced about 1.58 D and enlarged about 0.2 mm, respectively. For three asterisk targets of different sizes (1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm), the mean accommodative response and pupil size through the DMS was 0.19 ± 0.16, 0.27 ± 0.24, 0.26 ± 0.19 D; and 4.20 ± 1.02, 3.94 ± 0.73, 4.21 ± 0.57 mm, respectively. The changes of the accommodative response and pupil size were not significant with the size of the targets (p > 0.05). In the low or high myopia group, the accommodative response of 0.4 m and 2.285 m was 1.68 ± 0.42 D and 0.21 ± 0.48 D; and 1.88 ± 0.25 D and 0.05 ± 0.40 D, respectively. The accommodative response was significantly reduced by 1.47 D and 1.83 D for these two groups. The accommodative microfluctuations (AMFs) were stable when a DMS was used; on the contrary, the AMFs were unstable at a viewing distance of 0.4 m. Conclusions: In this study, the imaging through a DMS extended the viewing distance and enlarged the image, and resulted in a reduction in the accommodative response and an increase in the pupil size. For the low myopia group and the high myopia group, the accommodative response and pupil size were statistically significantly different before and after the use of the DMS. The reduction of the accommodative response could be applied for the improvement of asthenopia.

Keywords: accommodative microfluctuations (AMFs); accommodative response; double-mirror system (DMS); fatigue; myopia; near work; pupil size.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Accommodation, Ocular
  • Adolescent
  • Adult
  • Asthenopia*
  • Humans
  • Myopia*
  • Pupil / physiology
  • Refraction, Ocular
  • Vision Tests
  • Young Adult