Bright CsPbBr3 Perovskite Nanocrystals with Improved Stability by In-Situ Zn-Doping

Nanomaterials (Basel). 2022 Feb 24;12(5):759. doi: 10.3390/nano12050759.

Abstract

In this study, facile synthesis, characterization, and stability tests of highly luminescent Zn-doped CsPbBr3 perovskite nanocrystals (NCs) were demonstrated. The doping procedure was performed via partial replacement of PbBr2 with ZnBr2 in the precursor solution. Via Zn-doping, the photoluminescence quantum yield (PLQY) of the NCs was increased from 41.3% to 82.9%, with a blue-shifted peak at 503.7 nm and narrower spectral width of 18.7 nm which was consistent with the highly uniform size distribution of NCs observed from the TEM image. In the water-resistance stability test, the doped NCs exhibited an extended period-over four days until complete decomposition, under the harsh circumstances of hexane-ethanol-water mixing solution. The Zn-doped NC film maintained its 94% photoluminescence (PL) intensity after undergoing a heating/cooling cycle, surpassing the un-doped NC film with only 67% PL remaining. Based on our demonstrations, the in-situ Zn-doping procedure for the synthesis of CsPbBr3 NCs could be a promising strategy toward robust and PL-efficient nanomaterial to pave the way for realizing practical optoelectronic devices.

Keywords: Zn-doping; all inorganic lead halide perovskites; nanocrystals; thermal stability; water-resistance stability.