The Effect of ZnO, MgO, TiO2, and Na2O Modifiers on the Physical, Optical, and Radiation Shielding Properties of a TeTaNb Glass System

Materials (Basel). 2022 Mar 1;15(5):1844. doi: 10.3390/ma15051844.

Abstract

Novel glass samples with the composition 75TeO2-5Ta2O5-15Nb2O5-5x (where x = ZnO, MgO, TiO2, or Na2O) in mole percent were prepared. The physical, optical, and gamma radiation shielding properties of the glass samples were studied over a wide energy spectrum ranging between 0.015 and 20 MeV. The glasses' UV-vis spectra were utilized to evaluate the optical energy gap and refractive index. Glass samples had a refractive index ranging from 2.2005 to 2.0967. The results showed that the sample doped with zinc oxide (ZnO) recorded the highest density (ρglass), molar polarizability (αm), molar refraction (Rm), refractive index (n), and third-order nonlinear optical susceptibility (χ3) and the lowest optical energy gap (Eopt) among the samples under investigation. When comparing the current glass system with various standard glass shielding materials, the prepared glass system showed superior shielding performance at energies ranging between 40 and 85 keV. These findings indicate that the prepared glass systems can be used in diagnostic X-rays, especially in dental applications.

Keywords: LAC; MAC; PRE; metal oxide; molar polarizability; optical energy gap; refractive index.