Features of the Chemical Composition and Structure of Birch Phloem Dioxane Lignin: A Comprehensive Study

Polymers (Basel). 2022 Feb 28;14(5):964. doi: 10.3390/polym14050964.

Abstract

Understanding the chemical structure of lignin in the plant phloem contributes to the systematics of lignins of various biological origins, as well as the development of plant biomass valorization. In this study, the structure of the lignin from birch phloem has been characterized using the combination of three analytical techniques, including 2D NMR, Py-GC/MS, and APPI-Orbitrap-HRMS. Due to the specifics of the phloem chemical composition, two lignin preparations were analyzed: a sample obtained as dioxane lignin (DL) by the Pepper's method and DL obtained after preliminary alkaline hydrolysis of the phloem. The obtained results demonstrated that birch phloem lignin possesses a guaiacyl-syringyl (G-S) nature with a unit ratio of (S/G) 0.7-0.9 and a higher degree of condensation compared to xylem lignin. It was indicated that its macromolecules are constructed from β-aryl ethers followed by phenylcoumaran and resinol structures as well as terminal groups in the form of cinnamic aldehyde and dihydroconiferyl alcohol. The presence of fatty acids and flavonoids removed during alkaline treatment was established. Tandem mass spectrometry made it possible to demonstrate that the polyphenolic components are impurities and are not incorporated into the structure of lignin macromolecules. An important component of phloem lignin is lignin-carbohydrate complexes incorporating xylopyranose moieties.

Keywords: Py-GC/MS; birch phloem; high-resolution mass spectrometry; lignin; nuclear magnetic resonance.