Oxygen Vacancy-Mediated Growth of Amorphous Discharge Products toward an Ultrawide Band Light-Assisted Li-O2 Batteries

Adv Mater. 2022 Mar;34(10):e2107826. doi: 10.1002/adma.202107826. Epub 2022 Jan 31.

Abstract

Photoassisted electrochemical reaction is regarded as an effective approach to reduce the overpotential of lithium-oxygen (Li-O2 ) batteries. However, the achievement of both broadband absorption and long term battery cycling stability are still a formidable challenge. Herein, an oxygen vacancy-mediated fast kinetics for a photoassisted Li-O2 system is developed with a silver/bismuth molybdate (Ag/Bi2 MoO6 ) hybrid cathode. The cathode can offer both double advantages for light absorption covering UV to visible region and excellent electrochemical activity for O2 . Upon discharging, the photoexcited electrons from Ag nanoplate based on the localized surface plasmon resonance (LSPR) are injected into the oxygen vacancy in Bi2 MoO6 . The fast oxygen reaction kinetics generate the amorphous Li2 O2 , and the discharge plateau is improved to 3.05 V. Upon charging, the photoexcited holes are capable to decompose amorphous Li2 O2 promptly, yielding a very low charge plateau of 3.25 V. A first cycle round-trip efficiency is 93.8% and retention of 70% over 500 h, which is the longest cycle life ever reported in photoassisted Li-O2 batteries. This work offers a general and reliable strategy for boosting the electrochemical kinetics by tailoring the crystalline of Li2 O2 with wide-band light.

Keywords: Li-O 2 batteries; amorphous Li 2O 2; kinetics; oxygen vacancies; ultrawide band.