Temporal and spatial dynamics of tropical macroalgal contributions to blue carbon

Sci Total Environ. 2022 Jul 1:828:154369. doi: 10.1016/j.scitotenv.2022.154369. Epub 2022 Mar 6.

Abstract

Blue carbon ecosystems are a vital part of nature-based climate solutions due to their capacity to store and sequester carbon, but often exclude macroalgal beds even though they can form highly productive coastal ecosystems. Recent estimates of macroalgal contributions to global carbon sequestration are derived primarily from temperate kelp forests, while tropical macroalgal carbon stock in living biomass is still unclear. Here, using Singapore as a case study, we integrate field surveys and remote sensing data to estimate living macroalgal carbon stock. Results show that macroalgae in Singapore account for up to 650 Mg C biomass stock, which is greater than the aboveground carbon found in seagrass meadows but lower than that in mangrove forests. Ulva and Sargassum dominate macroalgal assemblages and biomass along the coast, with both genera exhibiting distinct spatio-temporal variation. The annual range of macroalgal biomass carbon is estimated to be 450 Mg C yr-1, or 0.77 Mg C ha-1 yr-1. Noting the uncertainties of the fate of macroalgal biomass carbon, we estimate the potential sequestration rate and find that it is comparable to mature terrestrial ecosystems such as tropical grasslands and temperate forests. This study demonstrates that macroalgal seasonality allows for a consistent amount of biomass carbon to either be exported and eventually sequestered, or harvested for utilization on an annual basis. These findings on macroalgal growth patterns and their considerable contributions to tropical coastal carbon pool add to the growing support for macroalgae to be formally included in blue carbon assessments.

Keywords: Carbon stock; Macroalgae; Nature-based solutions; Seasonality; Sentinel-2.

MeSH terms

  • Biomass
  • Carbon Sequestration
  • Carbon*
  • Ecosystem
  • Forests
  • Seaweed*
  • Tropical Climate

Substances

  • Carbon