First report of root knot nematodes Meloidogyne incognita and M. javanica parasitizing sweet potato, Ipomoea batatas L., in Portugal

Plant Dis. 2022 Mar 8. doi: 10.1094/PDIS-12-21-2680-PDN. Online ahead of print.

Abstract

Sweet potato, Ipomoea batatas L., is a tuberous root vegetable rich in low glycemic sugars, vitamins and fibers (Galvão et al., 2021). Although it is widely cropped and consumed in tropical regions, in Europe consumer demand is growing exponentially (CBI, 2021). In Portugal, the production area of sweet potato increased from 588 ha in 2011 to 954 ha in 2017, and exports increased from 2404 tons in 2011 to 13412 tons in 2019 (FAOSTAT, 2021). During a survey carried out in August 2019, sweet potato plants were collected in Almada (38°39'40"N 9°10'54"W) and Belmonte (38°39'40"N 9°10'54"W), South and Centre regions of Portugal, respectively. No symptoms were observed on leaves, however, roots presented numerous galls and/or small spots (females and respective egg masses) were observed in the tuberous root flesh, suggestive of root knot nematodes (RKN, Meloidogyne spp.) infection. At least 8 individual females and respective egg masses were handpicked from roots of each sample and characterized biochemically by electrophoretic analysis of esterases (Pais & Abrantes, 1989). Phenotypes I2 and J3, attributed to M. incognita and M. javanica, respectively, were present in samples from Almada, whereas only phenotype I2 was found from Belmonte sample (Santos et al., 2019). Pure RKN cultures were established on tomato cv. Coração-de-Boi to obtain inoculum for molecular characterization and host suitability assays. Molecular characterization was performed by DNA amplification with M. incognita (Mi-F/Mi-R) and M. javanica (Fjav/Rjav) species-specific primers (Zijlstra et al., 2000; Meng et al., 2004). DNA amplification resulted in unique bands of ≈900 bp and ≈650 bp, respectively, confirming the RKN species identification. The host suitability of sweet potato cvs. Lira (local variety, purple skin, yellow flesh) and Murasaki (purple skin, white/pale to yellow flesh) to M. javanica (Almada) and M. incognita (Belmonte) isolates was assessed. Sweet potato slips with ≈10 cm roots were transplanted to 500 cm3 pots (one slip/pot) and after 2 weeks, each plant was inoculated with 5000 eggs + second-stage juveniles (Pi, initial population density) and maintained in a growth chamber (25±2°C; 12:12 h photoperiod). Tomato cv. Coração-de-Boi was included as a positive control. Each RKN species-plant germplasm combination was repeated 6 times. At 60 days after inoculation, host suitability was evaluated on the basis of root gall index (GI) and reproduction factor (Rf=final population density/Pi) (Sasser et al., 1984). Sweet potato cv. Lira was susceptible (GI=5; Rf=111.8) to M. incognita and resistant (GI=2; Rf=0.11) to M. javanica; while cv. Murasaki was hypersusceptible (GI=5; Rf=0.9) to M. incognita and susceptible (GI=5; Rf=5.5) to M. javanica. Although cultivars varied in their response to M. incognita and M. javanica isolates and variation in the final population density was high, both RKN isolates reproduced in these sweet potato cultivars. In previous studies, cv. Murasaki was considered resistant to M. enterolobii and to M. incognita (La Bonte et al. 2008; Schwarz et al., 2021). Depending on the RKN species, cultivation of cvs. Murasaki and Lira may thus benefit succeeding crops, but they should be combined with other management strategies to further reduce RKN populations in the field. In Portugal, M. incognita and M. javanica have been found associated with economically important horticultural crops, such as tomato and potato, trees and weeds (Santos et al., 2019; Maleita et al., 2021). To our knowledge, these species are reported for the first time parasitizing sweet potato in Portugal and this is the first report on the occurrence of M. incognita and M. javanica infecting sweet potato in Europe. Although findings were not totally unexpected due to the wide distribution and host range of these RKN species, they are of crucial importance since the sweet potato production in Europe has almost doubled from 50 (2011) to 97 thousand tons (2017), with Spain, Portugal, Italy and Greece being the largest producers (FAO, 2021). Our findings also reveal that sweet potato cropped in Portugal have different susceptibility levels to these common RKN species, reinforcing the importance of cultivar selection in RKN management.

Keywords: Cultivar Lira; Cultivar Murasaki; Esterase phenotype; Host suitability; Plant-parasitic nematodes; Species-specific primers.