Hypothesis-Driven, Structure-Based Design in Photopharmacology: The Case of eDHFR Inhibitors

J Med Chem. 2022 Mar 24;65(6):4798-4817. doi: 10.1021/acs.jmedchem.1c01962. Epub 2022 Mar 8.

Abstract

Photopharmacology uses light to regulate the biological activity of drugs. This precise control is obtained through the incorporation of molecular photoswitches into bioactive molecules. A major challenge for photopharmacology is the rational design of photoswitchable drugs that show light-induced activation. Computer-aided drug design is an attractive approach toward more effective, targeted design. Herein, we critically evaluated different structure-based approaches for photopharmacology with Escherichia coli dihydrofolate reductase (eDHFR) as a case study. Through the iterative examination of our hypotheses, we progressively tuned the design of azobenzene-based, photoswitchable eDHFR inhibitors in five design-make-switch-test-analyze cycles. Targeting a hydrophobic subpocket of the enzyme and a specific salt bridge only with the thermally metastable cis-isomer emerged as the most promising design strategy. We identified three inhibitors that could be activated upon irradiation and reached potencies in the low-nanomolar range. Above all, this systematic study provided valuable insights for future endeavors toward rational photopharmacology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Drug Design
  • Escherichia coli
  • Escherichia coli Infections*
  • Humans
  • Isomerism
  • Tetrahydrofolate Dehydrogenase*

Substances

  • Tetrahydrofolate Dehydrogenase