Influence of surface chemistry and morphology of nanoparticles on protein corona formation

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jul;14(4):e1788. doi: 10.1002/wnan.1788. Epub 2022 Mar 7.

Abstract

Nanomaterials offer promising solutions as drug delivery systems and imaging agents in response to the demand for better therapeutics and diagnostics. However, the limited understanding of the interaction between nanoparticles and biological entities is currently hampering the development of new systems and their applications in clinical settings. Proteins and lipids in biological fluids are known to complex with nanoparticles to form a "biomolecular corona". This has been shown to affect particles' morphology and behavior in biological systems and their interactions with cells. Hence, understanding how nanomaterials' physicochemical properties affect the formation and composition of this biocorona is a crucial step. This work evaluates existing literature on how morphology (size and shape), and surface chemistry (charge and hydrophobicity) of nanoparticles influence the formation of protein corona. The latest evidence suggest that although surface charge promotes the interaction with proteins and lipids, surface chemistry plays a leading role in determining the affinity of the nanoparticle for biomolecules and, ultimately, the composition of the corona. More recently the study of additional nanoparticles' properties like shape and surface chirality have demonstrated a significant effect on protein corona architecture, providing new tools to tailor biomolecular corona formation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.

Keywords: biocorona; nanoparticles; protein corona.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Lipids
  • Nanomedicine / methods
  • Nanoparticles* / chemistry
  • Nanostructures* / chemistry
  • Protein Corona* / chemistry
  • Proteins

Substances

  • Lipids
  • Protein Corona
  • Proteins