The Critical Role of Environmental Synergies in the Creation of Bionanohybrid Microbes

Appl Environ Microbiol. 2022 Apr 12;88(7):e0232121. doi: 10.1128/aem.02321-21. Epub 2022 Mar 15.

Abstract

A wide range of bacteria can synthesize surface-associated nanoparticles (SANs) through exogenous metal ions reacting with sulfide produced via cysteine metabolism, resulting in the emergence of a biological-nanoparticle hybrid (bionanohybrid). The attached nanoparticles may couple to extracellular electron transfer, facilitating de novo photoelectrochemical processes. While SAN-cell coupling in hybrid organisms is opening a range of biotechnological possibilities, observation of bionanohybrids in nature is not commonly reported and their lab-based behavior remains difficult to control. We describe the critical role environmental synergy (microbial growth stage, cell densities, cysteine, and exogenous metal concentrations) plays in controlling the form and occurrence of Escherichia coli and Moorella thermoacetica bionanohybrids. SAN development depends on an appropriate cell density to metal ratio, with too few cells resulting in nanoparticle suppression through cytotoxicity or inhibition of cysteine conversion, and with too many cells diluting the number and size of particles produced. This cell number is governed by the concentration of cysteine present, which acts to protect the cells from metal ion toxicity. Exposing cells to metal and cysteine during the lag phase leads to SAN development, whereas cells in the exponential growth phase predominantly produce dispersed nanoparticles. Applying these principles more broadly, E. coli is shown to biosynthesize composite Bi/Cu sulfide SANs, and Clostridioides difficile can be coaxed into a bionanohybrid lifestyle by fine-tuning the cysteine dosage. Bionanohybrids maintain a remarkable ability for binary fission and sustained growth, opening doors to the production of SANs tailored to specific technological functions. IMPORTANCE Some bacteria can produce nanoscale-sized particles, which remain attached to the surface of the organism. The surface association of these nanoparticles creates a new mode of interaction between the microbe's environment and its internal cellular function, giving rise to a new hybrid lifeform, a biological nanoparticle hybrid (bionanohybrid). These hybrid organisms gain new or enhanced biological functions, and thus their creation opens a wide range of biotechnological possibilities. Despite this potential, the fundamental controls on bionanohybrid formation and occurrence remain poorly constrained. In this study, Escherichia coli K-12, Moorella thermoacetica, and Clostridioides difficile were used to test the combined influences of the growth phase, cell density, cysteine dose, and metal concentration in determining single and composite metal sulfide surface-associated nanoparticle production. The significance of this study is that it defined the critical synergies controlling nanoparticle formation on bacterial cell surfaces, unlocking the potential for bionanohybrid applications in a range of organisms.

Keywords: bacteria; bionanohybrid; metal sulfide; nanoparticle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cysteine
  • Escherichia coli
  • Escherichia coli K12*
  • Metal Nanoparticles* / chemistry
  • Moorella
  • Sulfides

Substances

  • Sulfides
  • Cysteine

Supplementary concepts

  • Moorella thermoacetica