Regimented Charge Transport Phenomena in Semiconductive Self-Assembled Rhenium Nanotubes

ACS Appl Mater Interfaces. 2022 Mar 16;14(10):12423-12433. doi: 10.1021/acsami.2c00665. Epub 2022 Mar 7.

Abstract

Photoconductivity, a crucial property, determines the potential of semiconductor materials for use in optoelectronic and photocatalytic device applications. The one-dimensional metal-organic nanotube semiconducting material [{Re(CO)3}6(bho)(phpy)6]n (MBT 1, where bho is benzene-1,2,3,4,5,6-hexaoate and phpy is 4-phenylpyridine) reported herein exhibits record photocurrent responses at a broad spectral range. MBT 1 is comprised of a unique nanotube structure that is composed of six rhenium sites, six 4-phenylpyridine ligands, and a benzene-1,2,3,4,5,6-hexaoate unit. The highly organized self-assembled molecular bamboo tube MBT 1 displays semiconducting characteristics with a low activation energy of 1.63 meV. The alternating current (AC) and direct current (DC) conductivities of pellet devices are approximately 10-4 S/cm. For a single-crystal device, DC conductivity was found to be 1.5 S/cm, an unprecedented 10 000 times higher. The bandgap of MBT 1 was determined to be 1.03 eV, consistent with the theoretically estimated value of 1.2 eV. Theoretical calculations suggest that the unique structural architecture of MBT 1 allows for effective charge transport, which is facilitated by the spatial separation of electrons and holes that MBT 1 contains. This also eliminates fast charge recombination. The findings are not only chemically and fundamentally important but also have great potential for applications in innovative nano-optoelectronics.

Keywords: charge transport; device; nanotube; photocurrent; semiconductor.