Growth of highly conducting MoS2-xNx thin films with enhanced 1T' phase by pulsed laser deposition and exploration of their nanogenerator application

iScience. 2022 Feb 10;25(3):103898. doi: 10.1016/j.isci.2022.103898. eCollection 2022 Mar 18.

Abstract

High-quality growth of MoS2-xNx films is realized on single-crystal c-Al2O3 substrates by the pulsed laser deposition (PLD) in ammonia rendering highly stable and tunable 1T'/2H biphasic constitution. Raman spectroscopy reveals systematic enhancement of 1T' phase component due to the incorporation of covalently bonded N-doping in MoS2 lattice, inducing compressive strain. Interestingly, the film deposited at 300 mTorr NH3 shows ∼80% 1T' phase. The transport measurements performed on MoS2-xNx films deposited at 300 mTorr NH3 display very low room temperature resistivity of 0.03 mΩ-cm which is 100 times enhanced over the undoped MoS2 grown under comparable conditions. A triboelectric nanogenerator (TENG) device containing biphasic MoS2-xNx film as an electron acceptor exhibits a clear enhancement in the output voltage as compared to the pristine MoS2. Device architecture, p-type N doping in MoS2 lattice, favorably increased work-function, multiphasic component of MoS2, and increased surface roughness synergistically contribute to superior TENG performance.

Keywords: Materials science; Materials synthesis; Nanomaterials.