Exercise ameliorates high-fat diet-induced insulin resistance accompanied by changes in protein levels of hepatic ATF3-related signaling in rats

Physiol Behav. 2022 May 15:249:113766. doi: 10.1016/j.physbeh.2022.113766. Epub 2022 Feb 28.

Abstract

Purpose: Exercise is an effective way to alleviate insulin resistance (IR). However, the underlying mechanisms remain to be elucidated. Previous studies demonstrated that cardiolipin synthase 1 (CRLS1)/interferon-regulatory factor-2 binding protein 2 (IRF2bp2)-activating transcription factor 3 (ATF3)-adiponectin receptor 2 (AdipoR2)-adaptor protein containing pH domain, PTB domain and leucine zipper motif 1 (APPL1)-protein kinase B (AKT/PKB)-related signaling was closely associated with obesity-induced IR-related diseases, but the correlation between exercise training alleviating obesity-induced IR and the protein levels of hepatic CRLS1/IRF2bp2-ATF3-AdipoR2-APPL1-AKT-related signaling in rats is unknown. Therefore, We want to investigate the effect of exercise training on IR and the protein levels of hepatic CRLS1/IRF2bp2-ATF3-AdipoR2-APPL1-AKT-related signaling in rat.

Methods: The male healthy Sprague-Dawley rats were divided into four groups: normal control group (NCG, n = 10), diet-induced obesity-sedentary group (DIO-SG, n = 10), diet-induced obesity-chronic exercise group (DIOCEG, n = 10) received chronic swim exercise training and diet-induced obesity-acute exercise group (DIO-AEG, n = 10) received acute swim exercise training. We measured the levels of IR-related indicators and the protein levels of hepatic CRLS1/IRF2bp2-ATF3-AdipoR2-APPL1-AKT-related signaling in NCG, DIO-SG, DIOCEG and DIO-AEG.

Results: We found that high-fat diet (HFD)-induced obesity decreased insulin sensitivity in rats accompanied by decreased protein levels of hepatic CRLS1, IRF2bp2, AdipoR2, APPL1, p-AKT and increased protein level of hepatic ATF3. The acute exercise and the chronic exercise both increased insulin sensitivity in rats. The chronic exercise decreased hepatic ATF3 protein level and increased CRLS1, IRF2bp2, AdipoR2, APPL1, p-AKT protein levels in HFD-fed rats. The acute exercise decreased hepatic ATF3 protein level and increased hepatic IRF2bp2, APPL1 and p-AKT protein levels in HFD-fed rats. The acute exercise had no significant effect on hepatic CRLS1 and AdipoR2 protein levels in HFD-fed rats.

Conclusion: Our current findings indicated that exercise alleviated obesity-induced IR accompanied by changes in protein levels of hepatic ATF3-related signaling in rats. Our results are meaningful for exploring the molecular mechanism of exercise alleviating IR symptoms.

Keywords: Exercise; IRF2bp2, CRLS1, ATF3; Insulin resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Activating Transcription Factor 3
  • Animals
  • Diet, High-Fat / adverse effects
  • Insulin / metabolism
  • Insulin Resistance* / physiology
  • Male
  • Obesity / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Activating Transcription Factor 3
  • Atf3 protein, rat
  • Insulin
  • Proto-Oncogene Proteins c-akt