A Novel Fluoro-Pyrazine-Bridged Donor-Accepter-Donor Fluorescent Probe for Lipid Droplet-Specific Imaging in Diverse Cells and Superoxide Anion Generation

Pharm Res. 2022 Jun;39(6):1205-1214. doi: 10.1007/s11095-022-03216-y. Epub 2022 Mar 2.

Abstract

Purpose: Lipid droplets (LDs) are dynamic organelles which associated with many metabolic processes. Reliable long-term imaging of LD is of great importance in LD-based therapy and research. Conventional fluorescent probes suffer from poor photostability and difficulty of preparation, which compromise their LD imaging ability. In this study, we aim to provide a novel and universal fluorescent probe for LD-specific imaging in both eukaryotic and prokaryotic cells. The versatile and potential applications of the probe were also evaluated.

Methods: We used one-step Suzuki coupling reaction to synthesize a fluoro-pyrazine-bridged donor-acceptor-donor fluorescent probe (T-FP-T). The fluorescent properties and stability of T-FP-T were detected. Then, LD-specific imaging and dynamic movement tracking capabilities of T-FP-T were studied in fungus, bacteria, plant and animal tissues. The biosafety and photodynamic toxicity of the probe under different light irradiation were characterized.

Results: T-FP-T showed large Stokes shift, superior brightness, excellent photostability, low toxicity. T-FP-T exhibited significant overlaps with adipophilin antibody or the commercial LD probe (LipidSpot™) in the cytoplasm, but not with Mitotracker red, Lysotracker red and Peroxisome Labeling dye. Moreover, T-FP-T also showed efficient superoxide anion generation capability under white LED light irradiation. The viability of Hela cells co-treated with T-FP-T and 1-h white LED light irradiation decreased to 62%.

Conclusions: All these outstanding capabilities make T-FP-T a new efficient LD-specific imaging probe. The generated superoxide anion from T-FP-T under white LED light irradiation could cause obvious cell death, which will inspire broad study in LD-targeted photodynamic therapy.

Keywords: Eukaryotic and prokaryotic cells; Lipid droplets; Specific imaging; Superoxide anion generation.

MeSH terms

  • Animals
  • Fluorescent Dyes* / metabolism
  • HeLa Cells
  • Humans
  • Lipid Droplets* / metabolism
  • Pyrazines
  • Superoxides / metabolism

Substances

  • Fluorescent Dyes
  • Pyrazines
  • Superoxides