Hexaconazole exposure ravages biosynthesis pathway of steroid hormones: revealed by molecular dynamics and interaction

Toxicol Res (Camb). 2021 Dec 16;11(1):60-76. doi: 10.1093/toxres/tfab113. eCollection 2022 Feb.

Abstract

Widespread application of hexaconazole for agriculture purpose poses a threat to human health by disrupting normal endocrine homeostasis. To avoid adverse health effects on human, it is crucial to identify the effects of hexaconazole on key enzymes responsible for steroidal hormone synthesis. In view of this, present study was conducted to investigate the interaction mechanisms of hexaconazole with key enzymes in comparison with their food drug administration (FDA) approved inhibitor by molecular docking and molecular dynamics simulations. Results indicate that hexaconazole contacts with the active site of the key enzymes required for steroidal hormonal synthesis. Results pertaining to root-mean-square deviation, root-mean-square calculation, radius of gyration, hydrogen bonding and solvent accessible surface area exhibited that the interaction pattern and stability of interaction of hexaconazole was similar to enzyme specific inhibitor. In addition, ligand and enzyme complex interaction energy of hexaconazole was almost similar to key enzyme and FDA-approved enzyme specific inhibitor complex. This study offers a molecular level of understanding of hexaconazole with different enzymes required for steroidal hormonal synthesis. Findings of the study clearly suggest that hexaconazole has efficacy to stably interact with various enzyme required to progress the pathway of hormonal synthesis. If incessant exposure of hexaconazole occurs during agricultural work it may lead to ravage hormonal synthesis or potent endocrine disruption. The result of binding energy and complex interaction energy is depicted in the graphical abstract.

Keywords: biosynthesis; dynamics simulation; endocrine disruption; hexaconazole; interaction energy; molecular; pathway.