Exploring brain activity for positive and negative emotions by means of EEG microstates

Sci Rep. 2022 Mar 1;12(1):3404. doi: 10.1038/s41598-022-07403-0.

Abstract

Microstate analysis applied to electroencephalographic signals (EEG) allows both temporal and spatial imaging exploration and represents the activity across the scalp. Despite its potential usefulness in understanding brain activity during a specific task, it has been mostly exploited at rest. We extracted EEG microstates during the presentation of emotional expressions, presented either unilaterally (a face in one visual hemifield) or bilaterally (two faces, one in each hemifield). Results revealed four specific microstate's topographies: (i) M1 involves the temporal areas, mainly in the right hemisphere, with a higher occurrence for stimuli presented in the left than in the right visual field; (ii) M2 is localized in the left temporal cortex, with higher occurrence and coverage for unilateral than bilateral presentations; (iii) M3, with a bilateral temporo-parietal localization, shows higher coverage for bilateral than unilateral presentation; (iv) M4, mainly localized in the right fronto-parietal areas and possibly representing the hemispheric specialization for the peculiar stimulus category, shows higher occurrence and coverage for unilateral stimuli presented in the left than in the right visual field. These results suggest that microstate analysis is a valid tool to explore the cerebral response to emotions and can add new insights on the cerebral functioning, with respect to other EEG markers.

MeSH terms

  • Brain Mapping / methods
  • Brain* / physiology
  • Dominance, Cerebral
  • Electroencephalography
  • Emotions
  • Nervous System Physiological Phenomena*