Effect of Hydration on Electron Attachment to Methanesulfonic Acid Clusters

J Phys Chem A. 2022 Mar 10;126(9):1542-1550. doi: 10.1021/acs.jpca.2c00221. Epub 2022 Mar 1.

Abstract

We report an experimental and computational study of the electron-induced chemistry of methanesulfonic acid (MSA, MeSO3H) in clusters. We combine the mass spectra after the 70 eV electron ionization with the negative ion spectra after electron attachment (EA) at low electron energies of 0-15 eV of the MSA molecule, small MSA clusters, and microhydrated MSA clusters to reveal the solvation effects. The MSA/He coexpansion only generates small MSA clusters with up to four molecules, but adding water substantially hydrates the MSA clusters, resulting in clusters composed of 1-2 MSA molecules accompanied by quite a few water molecules. The clustering strongly suppresses the fragmentation of the MSA molecules upon both the positive ionization and EA. The electron-energy-dependent ion yield for different negative ions is measured. For the MSA molecule and pure MSA clusters, EA leads to an H-abstraction yielding MeSO3-. It proceeds efficiently at low electron energies below 2 eV with a shoulder at 3-4 eV and a broad, almost 2 orders of magnitude weaker, peak around 8 eV. The hydrated (H2O)nMeSO3- ions with n ≤ 3 exhibit only a broad peak around 7 eV similar to EA of pure water clusters. Thus, for the small clusters, the electron attachment and hydrogen abstraction from water occur. On the other hand, the larger clusters with n > 4 display a peak below 2 eV, which quickly dominates the spectrum with increasing n. This peak is related to the formation of the H3O+·MeSO3- ion pair upon hydration and subsequent dipole-supported electron attachment followed by the hydronium neutralization and H3O radical dissociation. The size-resolved experimental data indicate that the ionic dissociation of MSA starts to occur in the neutral MeSO3H(H2O)N clusters with about four water molecules.