Cytocompatibility / Antibacterial Activity Trade-off for Knittable Wet-Spun Chitosan Monofilaments Functionalized by the In Situ Incorporation of Cu2+ and Zn2

ACS Biomater Sci Eng. 2022 Apr 11;8(4):1735-1748. doi: 10.1021/acsbiomaterials.2c00079. Epub 2022 Feb 28.

Abstract

The wet spinning of cytocompatible, bioresorbable, and knittable chitosan (CTS) monofilaments would be advantageous for a variety of surgical applications. The complexation capacity of chitosan with Cu2+ or Zn2+ can be leveraged to enhance its antibacterial activity, but not at the expense of cytocompatibility. In this work, a wet-spinning process was adapted for the in situ incorporation of Cu2+ or Zn2+ with chitosan dopes to produce monofilaments at different drawing ratios (τtot) with various cation/glucosamine molar ratios, evaluated in the fibers (rCu,f and rZn,f). Cytocompatibility and antibacterial activity of wet-spun monofilaments were, respectively, quantified by in vitro live-dead assays on balb 3T3 and by different evaluations of the proliferation inhibition of Staphylococcus epidermidis (Gram+) and Escherichia coli (Gram-). Knittability was tested by a specific tensile test using a knitting needle and evaluated with an industrial knitting machine. It was found that rCu,f = 0.01 and rZn,f = 0.03 significantly increase the antibacterial activity without compromising cytocompatibility. Wet spinning with τtot = 1.6 allowed the production of knittable CTS-Cu monofilaments, as confirmed by knitting assays under industrial conditions.

Keywords: antibacterial; chitosan; complexation; cytocompatibility; knittability; wet-spinning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Chitosan* / pharmacology
  • Escherichia coli
  • Zinc / pharmacology

Substances

  • Anti-Bacterial Agents
  • Chitosan
  • Zinc