Superconducting YAu3Si and Antiferromagnetic GdAu3Si with an Interpenetrating Framework Structure Built from 16-Atom Polyhedra

Inorg Chem. 2022 Mar 14;61(10):4322-4334. doi: 10.1021/acs.inorgchem.1c03456. Epub 2022 Feb 28.

Abstract

Investigations of reaction mixtures REx(Au0.79Si0.21)100-x (RE = Y and Gd) yielded the compounds REAu3Si which adopt a new structure type, referred to as GdAu3Si structure (tP80, P42/mnm, Z = 16, a = 12.8244(6)/12.7702(2) Å, and c = 9.0883(8)/9.0456(2) Å for GdAu3Si/YAu3Si, respectively). REAu3Si was afforded as millimeter-sized faceted crystal specimens from solution growth employing melts with composition RE18(Au0.79Si0.21)82. In the GdAu3Si structure, the Au and Si atoms are strictly ordered and form a framework built of corner-connected, Si-centered, trigonal prismatic units SiAu6. RE atoms distribute on 3 crystallographically different sites and each attain a 16-atom coordination by 12 Au and 4 Si atoms. These 16-atom polyhedra commonly fill the space of the unit cell. The physical properties of REAu3Si were investigated by heat capacity, electrical resistivity, and magnetometry techniques and are discussed in the light of theoretical predictions. YAu3Si exhibits superconductivity around 1 K, whereas GdAu3Si shows a complex magnetic ordering, likely related to frustrated antiferromagnets exhibiting chiral spin textures. GdAu3Si-type phases with interesting magnetic and transport properties may exist in an extended range of ternary RE-Au-Si systems, similar to the compositionally adjacent cubic 1/1 approximants RE(Au,Si)∼6.