Compartmentalization of metabolism between cell types in multicellular organisms: a computational perspective

Curr Opin Syst Biol. 2022 Mar:29:100407. doi: 10.1016/j.coisb.2021.100407. Epub 2021 Nov 14.

Abstract

In multicellular organisms, metabolism is compartmentalized at many levels, including tissues and organs, different cell types, and subcellular compartments. Compartmentalization creates a coordinated homeostatic system where each compartment contributes to the production of energy and biomolecules the organism needs to carrying out specific metabolic tasks. Experimentally studying metabolic compartmentalization and metabolic interactions between cells and tissues in multicellular organisms is challenging at a systems level. However, recent progress in computational modeling provides an alternative approach to this problem. Here we discuss how integrating metabolic network modeling with omics data offers an opportunity to reveal metabolic states at the level of organs, tissues and, ultimately, individual cells. We review the current status of genome-scale metabolic network models in multicellular organisms, methods to study metabolic compartmentalization in silico, and insights gained from computational analyses. We also discuss outstanding challenges and provide perspectives for the future directions of the field.