Self-supported electrode based on two-dimensional NiPS3 for supercapacitor application

J Colloid Interface Sci. 2022 Jun 15:616:401-412. doi: 10.1016/j.jcis.2022.02.089. Epub 2022 Feb 22.

Abstract

Two-dimensional (2D) layered materials hold great promise for electrochemical energy storage due to their unique structure. It is always desirable to explore new-type high-performance 2D structured electrode materials in energy field. In this work, layered transition-metal chalcogenophosphite is developed as the electrode material for supercapacitors for the first time. NiPS3 nanosheet arrays are successfully in-situ grown on carbon cloth via a chemical vapor deposition method, and then directly used as the self-supported electrode for supercapacitors. The fabricated carbon cloth supported NiPS3 nanosheet arrays offer obviously superior electrochemical performance to the powdery NiPS3 nanosheets sample. The self-supported NiPS3 electrode exhibits a high specific capacitance of 1148F g-1 at a current density of 1 A g-1, and a good cycling stability with capacitance retention of 81.4% over 5000 cycles at 10 A g-1. Moreover, the assembled asymmetric supercapacitor device delivers a specific capacitance of 61.3F g-1 at a current density of 1 A g-1, and an energy density of 19.2 Wh kg-1 at a power density of 750 W kg-1 with a voltage window of 1.5 V. This work is of great significance for pioneering the application of 2D transition-metal chalcogenophosphites in supercapacitors.

Keywords: 2D materials; Metal phosphorus trichalcogenide; NiPS(3); Self-supported electrode; Supercapacitor.