PIEZO1 Ion Channels Mediate Mechanotransduction in Odontoblasts

J Endod. 2022 Jun;48(6):749-758. doi: 10.1016/j.joen.2022.02.005. Epub 2022 Feb 25.

Abstract

Introduction: Odontoblasts, terminally differentiated dentin-forming cells with their processes that penetrate into dentin, have been considered potential sensory cells. Current research suggests that odontoblasts sense external stimuli and transmit pain signals. PIEZO1, as a specific mechanically activated ion channel, may play an important role in mechanical transduction in odontoblasts. In this study, we devoted to investigating the functions and underlying molecular mechanisms of PIEZO1 ion channels in odontoblast mechanotransduction.

Methods: Human dental pulp stem cells were cultured in vitro and induced to differentiate into odontoblast-like cells (OLCs). The expression of PIEZO1 protein in pulp, dental pulp stem cells, and OLCs was detected by immunohistochemistry or immunofluorescence. The mechanical sensitivity of OLCs was detected by a constructed fluid shear stress model and examined by calcium fluorescence intensity. A single-cell mechanical stimulation model was used to detect the PIEZO1 electrophysiological properties of OLCs. Yoda1 (a PIEZO1-specific agonist), GsMTx4 (a PIEZO1 antagonist), and non-calcium ion extracellular solution were utilized to confirm PIEZO1 mechanotransduction in OLCs in both fluid shear stress and single-cell mechanical stimulation assays. The amount of ATP released by OLCs was measured under stimulation with Yoda1 and GsMTx4. Rat trigeminal ganglion neurons were cultured in vitro and detected by whole-cell patch-clamp recording under ATP stimulation.

Results: PIEZO1 ion channels were positively expressed in OLCs and odontoblastic bodies and processes but weakly expressed in dental pulp cells. After the treatment of OLCs with shearing stress or Yoda1, the fluorescence intensity of intracellular calcium ions increased rapidly but did not noticeably change after treatment with GsMTx4 or the non-calcium ion extracellular solution. When single-cell mechanical stimuli were applied to OLCs, the evoked inward currents were recorded by patch-clamp electrophysiology. The inward currents increased and current inactivation became slower after Yoda1 treatment, but these currents almost completely disappeared after the addition of GsMTx4. The amount of ATP released by OLCs increased significantly after Yoda1 stimulation, while GsMTx4 reversed the release of ATP. Whole-cell patch-clamp detection showed that ATP evoked slow inward currents and increased the frequency of action potentials of trigeminal ganglion neurons.

Conclusions: Taken together, these findings indicated that odontoblasts evoked a fast inward current via PIEZO1 ion channels after the application of external mechanical stimuli and released ATP to transmit signals to adjacent cells. Thus, PIEZO1 ion channels in odontoblasts mediate mechanotransduction under various pathophysiological conditions in dentin.

Keywords: ATP; PIEZO1; dentin sensitivity; ion channel; mechanosensory transduction; odontoblasts.

MeSH terms

  • Adenosine Triphosphate
  • Animals
  • Calcium / metabolism
  • Ion Channels / metabolism
  • Mechanotransduction, Cellular* / physiology
  • Membrane Proteins / metabolism*
  • Odontoblasts* / metabolism
  • Rats

Substances

  • Ion Channels
  • Membrane Proteins
  • Piezo1 protein, rat
  • Adenosine Triphosphate
  • Calcium