Size-dependent in vitro inhalation bioaccessibility of PAHs and O/N PAHs - Implications to inhalation risk assessment

Environ Pollut. 2022 May 15:301:119045. doi: 10.1016/j.envpol.2022.119045. Epub 2022 Feb 22.

Abstract

Size segregated samples (<0.49, 0.49-0.95, 0.95-1.5, 1.5-3.0, 3.0-7.2 and > 7.2 μm) of atmospheric particulate matter (APM) were collected at a traffic site in the urban agglomeration of Thessaloniki, northern Greece, during the cold and the warm period of 2020. The solvent-extractable organic matter was analyzed for selected organic contaminants including polycyclic aromatic hydrocarbons (PAHs), and their nitro- and oxy-derivarives (NPAHs and OPAHs, respectively). Mean concentrations of ∑16PAHs, ∑6NPAHs and ∑10OPAHs associated to total suspended particles (TSP) were 18 ng m-3, 0.2 ng m-3 and 0.9 ng m-3, respectively, in the cold period exhibiting significant decrease (6.4, 0.2 and 0.09 ng m-3, respectively) in the warm period. The major amount of all compounds was found to be associated with the alveolar particle size fraction <0.49 μm. The inhalation bioaccessibility of PAHs and O/N PAHs was measured in vitro using two simulated lung fluids (SLFs), the Gamble's solution (GS) and the artificial lysosomal fluid (ALF). With both SLFs, the derived bioaccessible fractions (BAFs) followed the order PAHs > OPAHs > NPAHs. Although no clear dependence of bioaccessibility on particle size was obtained, increased bioaccessibility of PAHs and PAH derivatives in coarse particles (>7.2 μm) was evident. Bioaccessibility was found to be strongly related to the logKOW and the water solubility of individual compounds hindering limited mobilization of the most hydrophobic and less water-soluble compounds from APM to SLFs. The lifetime cancer risk due to inhalation exposure to bioaccessible PAHs, NPAHs and OPAHs was estimated and compared to those calculated from the particulate concentrations of organic contaminants.

Keywords: Bioaccessibility; NPAHs; OPAHs; PAHs; Size distribution.

MeSH terms

  • Air Pollutants* / analysis
  • Environmental Monitoring
  • Particulate Matter / analysis
  • Polycyclic Aromatic Hydrocarbons* / analysis
  • Risk Assessment

Substances

  • Air Pollutants
  • Particulate Matter
  • Polycyclic Aromatic Hydrocarbons