Yttrium Trifluoride as a Marker of Infiltration Rate of Decalcified Root Cementum: An In Vitro Study

Polymers (Basel). 2022 Feb 17;14(4):780. doi: 10.3390/polym14040780.

Abstract

Research related to the development of a dental infiltrant for minimally invasive treatment of initial caries of hard dental tissues is presented. The formulation of the developed infiltrant material includes typical methacrylate monomers used in dentistry, an author's adhesion monomer containing metronidazole, a photoinitiating system and yttrium trifluoride (YF3). The main objective of the study was to evaluate penetration into decalcified root cementum using scanning electron microscope of an experimental preparation with the characteristics of a dental infiltrant compared to a commercial preparation with the addition of YF3 as a contrast agent. Microscopic observations showed that YF3 particles virtually did not penetrate deep into the root cementum-this was mainly due to the particle size of YF3. Observations of cementum and root dentin tissue infiltration: resin tissue infiltration was visible to a depth of about 80 to 120 μm without the use of a tracer, which, due to agglomeration and particle size, remained on the cementum surface or in the resin used for inlaying. There were no differences between the degree of penetration of an experimental preparation with the characteristics of a dental infiltrant, as compared to a commercial preparation.

Keywords: minimally invasive dentistry; polymers; resin infiltration; root caries.