Sequential Infiltration Synthesis into Maltoheptaose and Poly(styrene): Implications for Sub-10 nm Pattern Transfer

Polymers (Basel). 2022 Feb 10;14(4):654. doi: 10.3390/polym14040654.

Abstract

Vapor phase infiltration into a self-assembled block copolymer (BCP) to create a hybrid material in one of the constituent blocks can enhance the etch selectivity for pattern transfer. Multiple pulse infiltration into carbohydrate-based high-χ BCP has previously been shown to enable sub-10 nm feature pattern transfer. By optimizing the amount of infiltrated material, the etch selectivity should be further improved. Here, an investigation of semi-static sequential infiltration synthesis of trimethyl aluminum (TMA) and water into maltoheptaose (MH) films, and into hydroxyl-terminated poly(styrene) (PS-OH) films, was performed, by varying the process parameters temperature, precursor pulse duration, and precursor exposure length. It was found that, by decreasing the exposure time from 100 to 20 s, the volumetric percentage on included pure Al2O3 in MH could be increased from 2 to 40 vol% at the expense of a decreased infiltration depth. Furthermore, the degree of infiltration was minimally affected by temperature between 64 and 100 °C. Shorter precursor pulse durations of 10 ms TMA and 5 ms water, as well as longer precursor pulses of 75 ms TMA and 45 ms water, were both shown to promote a higher degree, 40 vol%, of infiltrated alumina in MH. As proof of concept, 12 nm pitch pattern transfer into silicon was demonstrated using the method and can be concluded to be one of few studies showing pattern transfer at such small pitch. These results are expected to be of use for further understanding of the mechanisms involved in sequential infiltration synthesis of TMA/water into MH, and for further optimization of carbohydrate-based etch masks for sub-10 nm pattern transfer. Enabling techniques for high aspect ratio pattern transfer at the single nanometer scale could be of high interest, e.g., in the high-end transistor industry.

Keywords: block copolymer; hybrid material; neutron reflectometry; sequential infiltration synthesis.