Comparable Studies on Nanoscale Antibacterial Polymer Coatings Based on Different Coating Procedures

Nanomaterials (Basel). 2022 Feb 11;12(4):614. doi: 10.3390/nano12040614.

Abstract

The antibacterial activity of different antibiotic and metal-free thin polymer coatings was investigated. The films comprised quaternary ammonium compounds (QAC) based on a vinyl benzyl chloride (VBC) building block. Two monomeric QAC of different alkyl chain lengths were prepared, and then polymerized by two different polymerization processes to apply them onto Ti surfaces. At first, the polymeric layer was generated directly on the surface by atom transfer radical polymerization (ATRP). For comparison purposes, in a classical route a copolymerization of the QAC-containing monomers with a metal adhesion mediating phosphonate (VBPOH) monomers was carried out and the Ti surfaces were coated via drop coating. The different coatings were characterized by X-ray photoelectron spectroscopy (XPS) illustrating a thickness in the nanomolecular range. The cytocompatibility in vitro was confirmed by both live/dead and WST-1 assay. The antimicrobial activity was evaluated by two different assays (CFU and BTG, resp.,), showing for both coating processes similar results to kill bacteria on contact. These antibacterial coatings present a simple method to protect metallic devices against microbial contamination.

Keywords: antibacterial activity; atom transfer radicalpolymerization; coating; nanoscale; phosphonate; quaternary ammonium compounds.