Mapping the gene network landscape of Alzheimer's disease through integrating genomics and transcriptomics

PLoS Comput Biol. 2022 Feb 25;18(2):e1009903. doi: 10.1371/journal.pcbi.1009903. eCollection 2022 Feb.

Abstract

Integration of multi-omics data with molecular interaction networks enables elucidation of the pathophysiology of Alzheimer's disease (AD). Using the latest genome-wide association studies (GWAS) including proxy cases and the STRING interactome, we identified an AD network of 142 risk genes and 646 network-proximal genes, many of which were linked to synaptic functions annotated by mouse knockout data. The proximal genes were confirmed to be enriched in a replication GWAS of autopsy-documented cases. By integrating the AD gene network with transcriptomic data of AD and healthy temporal cortices, we identified 17 gene clusters of pathways, such as up-regulated complement activation and lipid metabolism, down-regulated cholinergic activity, and dysregulated RNA metabolism and proteostasis. The relationships among these pathways were further organized by a hierarchy of the AD network pinpointing major parent nodes in graph structure including endocytosis and immune reaction. Control analyses were performed using transcriptomics from cerebellum and a brain-specific interactome. Further integration with cell-specific RNA sequencing data demonstrated genes in our clusters of immunoregulation and complement activation were highly expressed in microglia.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alzheimer Disease* / genetics
  • Alzheimer Disease* / metabolism
  • Animals
  • Gene Regulatory Networks / genetics
  • Genome-Wide Association Study
  • Genomics
  • Mice
  • Transcriptome / genetics