Polarization and incidence insensitive analogue of electromagnetically induced reflection metamaterial with high group delay

Opt Express. 2022 Jan 17;30(2):3055-3065. doi: 10.1364/OE.447293.

Abstract

In this work, we demonstrate an analogue of electromagnetically induced reflection (EIR) effect with hybrid structure consisting of a silica (SiO2) square array layer embedded in graphene-dielectric-Au film constructed F-P cavity. It is shown that the SiO2 square array and F-P cavity create transverse waveguide with high quality factor (Q-factor) and longitudinal F-P modes, and their destructive interference effectively forms the EIR-like effect, which benefits for obtaining high group delay. In addition, the C4 symmetric structure ensures the polarization-independent for this EIR-like effect. With high Q-factor at the reflection window, the ultra-high group delay as high as 245 ps can be obtained. This structure will be useful to develop the EIT-like devices with excellent performance such as high group delay, polarization and incident insensitivity, and environmental stability.