Polarization enlargement of FOV in Super Multi-view display based on near-eye timing-apertures

Opt Express. 2022 Jan 17;30(2):1841-1859. doi: 10.1364/OE.446819.

Abstract

With strip-type timing-apertures attached to each eye of a viewer, more than one perspective views can be guided to either eye sequentially through different timing-apertures, thus implementing VAC-free (vergence-accommodation conflict-free) SMV (Super Multi-view) 3D (three-dimensional) display. To overcome the FOV (field of view) limitation problem due to small size of the timing-apertures along their arrangement direction, novel polarization architectures are designed to the timing-apertures in this paper. Correspondingly, the display screen of the proposed SMV display system is divided into M > 1 sub-screens along the arrangement direction of the timing-apertures, with adjacent sub-screens emitting light of mutually orthogonal polarization. At a time-point of each time period, a group of M timing-apertures, which correspond to the M sub-screens in a one-by-one manner along the arrangement direction, are turned on for creating an M-fold FOV, with each polarized timing-aperture of the group allowing light from the corresponding sub-screen passing through and blocking light from sub-screen(s) adjacent to the corresponding sub-screen. At 2T > 1 time-points of each time period, 2T groups of timing-apertures are turned on sequentially for presenting more than one two-dimensional images of the displayed scene to each eye, to implement SMV display based on persistence of vision. M stands for the FOV magnification number and T stands for the two-dimensional image number for each eye. As proof, a 3-fold FOV of 41° gets implemented experimentally with a currently available timing-aperture array of M = 3, accompanied by an effective noise-free region (ENFR) of 8.34 mm. Furthermore, the promising of freeing FOV from timing-aperture constraint fundamentally by larger M is described, out-of-screen blur along strip direction of the timing-apertures and the problem of limited ENFR are discussed.

MeSH terms

  • Accommodation, Ocular / physiology
  • Equipment Design
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods
  • Light
  • Microscopy, Polarization / instrumentation*
  • Models, Theoretical
  • Pupil / physiology*
  • Retina / diagnostic imaging*