Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots

Opt Express. 2022 Jan 17;30(2):1709-1722. doi: 10.1364/OE.448213.

Abstract

In this paper, a quasi-omnidirectional transmitter is proposed and demonstrated for underwater wireless optical communication (UWOC) using the photoluminescence of perovskite quantum dots (QDs). The proposed transmitter, without complex driving circuits, is compact and reliable thanks to the lens-free design. The system performance is tested in a 50-m swimming pool with a water attenuation coefficient of 0.38 dB/m. The maximum data rates of on-off-keying (OOK) signals over 10-m and 20-m transmission distances can reach 60 Mbps and 40 Mbps, respectively. When four clients are adopted in a code division multiple access (CDMA) based UWOC network, the maximum data rates of each client can reach 10 Mbps and 7.5 Mbps over 10-m and 20-m underwater channels, respectively. The system can meet the requirements of the last meter end-user access in the Internet of underwater things (IoUT) and underwater optical cellular network systems.