Photoinduced Bisphosphination of Alkynes with Phosphorus Interelement Compounds and Its Application to Double-Bond Isomerization

Molecules. 2022 Feb 14;27(4):1284. doi: 10.3390/molecules27041284.

Abstract

The addition of interelement compounds with heteroatom-heteroatom single bonds to carbon-carbon unsaturated bonds under light irradiation is believed to be an atomically efficient method to procure materials with carbon-heteroatom bonds. In this study, we achieved the photoinduced bisphosphination of alkynes using the phosphorus interelement compound, tetraphenyldiphosphine monosulfide (1), to stereoselectively obtain the corresponding (E)-vic-1,2-bisphosphinoalkenes, which are important transition-metal ligands. The bisphosphination reaction was performed by mixing 1 and various alkynes and then exposing the mixture to light irradiation. Optimization of the conditions for the bisphosphination reaction resulted in a wide substrate range and excellent trans-selectivity. Moreover, the completely regioselective introduction of pentavalent and trivalent phosphorus groups to the terminal and internal positions of the alkynes, respectively, was achieved. We also found that the novel double-bond isomerization reaction of the synthesized bisphosphinated products occurred with a catalytic amount of a base under mild conditions. Our method for the photoinduced bisphosphination of carbon-carbon unsaturated compounds may have strong implications for both organic synthesis and organometallic and catalyst chemistry.

Keywords: double-bond isomerization; interelement compounds; photoinduced bisphosphination; radical reaction; stereoselective synthesis.