Trichogenic Silver-Based Nanoparticles for Suppression of Fungi Involved in Damping-Off of Cotton Seedlings

Microorganisms. 2022 Feb 2;10(2):344. doi: 10.3390/microorganisms10020344.

Abstract

Mycogenic silver nanoparticles (AgNPs) produced by some biocontrol agents have shown the ability to inhibit the growth of numerous plant pathogenic fungi, which may be a unique method of disease management. This study describes the extracellular production of AgNPs by Trichoderma harzianum. The size, shape, charge, and composition of the AgNPs were subsequently studied by UV-visible spectroscopy, DLS, zeta potential, TEM, SEM, and EDX, among other methods. The AgNPs had sizes ranging from 6 to 15 nm. The antifungal activities of bio-synthesized AgNPs and two commercial fungicides (Moncut and Maxim XL) were tested against three soil-borne diseases (Fusarium fujikuroi, Rhizoctonia solani, and Macrophomina phaseolina). Cotton seedling illnesses were significantly reduced under greenhouse settings after significant in vitro antifungal activity was documented for the control of plant pathogenic fungi. The use of biocontrol agents such as T. harzianum, for example, may be a safe strategy for synthesizing AgNPs and using them to combat fungus in Egyptian cotton.

Keywords: Egyptian cotton; antifungal activity; microbial synthesis; silver nanoparticles; soil-borne pathogenic fungi.