Bacillus nematocida B16 Enhanced the Rhizosphere Colonization of Pochonia chlamydosporia ZK7 and Controlled the Efficacy of the Root-Knot Nematode Meloidogyne incognita

Microorganisms. 2022 Jan 20;10(2):218. doi: 10.3390/microorganisms10020218.

Abstract

Pochonia chlamydosporia is widely applied in many countries as a biocontrol fungus against parasitic nematodes in plants. In a field experiment, the combined use of Bacillus nematocida B16 increased the biocontrol efficiency of P. chlamydosporia ZK7 against Meloidogyne incognita. Further study indicated that the colonization of P. chlamydosporia ZK7 in the rhizosphere soil and the roots of tomatoes was significantly higher in the combined use group than in the control group. Gas chromatography was conducted to determine the effects of signaling substances. Five compounds, hexanal, (E)-2-hexenal, furfural, benzaldehyde, and 2-nonanone, were found to be highly altered in the volatile compounds produced in the soil under the combined application. The changes in benzaldehyde and 2-nonanone were the main factors that resulted in an increase in the colonization of fungi P. chlamydosporia ZK7 in the tomato roots. Furfural was the main volatile substance that affected the colonization of fungi P. chlamydosporia ZK7 in the soil. The combined use of B. nematocida B16 and P. chlamydosporia ZK7 altered the volatile ranges and resulted in increased colonization of biocontrol fungi and improved biocontrol efficiency against nematodes. This combined model could be used to promote the ability of biocontrol fungi to control root-knot nematodes.

Keywords: B. nematocida B16; Meloidogyne incognita; P. chlamydosporia ZK7; combination control; volatiles.