An Artificial Synapse Based on CsPbI3 Thin Film

Micromachines (Basel). 2022 Feb 10;13(2):284. doi: 10.3390/mi13020284.

Abstract

With the data explosion in the intelligent era; the traditional von Neumann computing system is facing great challenges of storage and computing speed. Compared to the neural computing system, the traditional computing system has higher consumption and slower speed. However; the feature size of the chip is limited due to the end of Moore's Law. An artificial synapse based on halide perovskite CsPbI3 was fabricated to address these problems. The CsPbI3 thin film was obtained by a one-step spin-coating method, and the artificial synapse with the structure of Au/CsPbI3/ITO exhibited learning and memory behavior similar to biological neurons. In addition, the synaptic plasticity was proven, including short-term synaptic plasticity (STSP) and long-term synaptic plasticity (LTSP). We also discuss the possibility of forming long-term memory in the device through changing input signals.

Keywords: artificial synapse; halide perovskite; long-term synaptic plasticity; short-term synaptic plasticity.