Simulation and Experimental Study on Roll-Forming Limit of Cup

Materials (Basel). 2022 Feb 9;15(4):1279. doi: 10.3390/ma15041279.

Abstract

Roll forming can improve the material utilization rate and production efficiency of cups with a curved rotary profile, but there is no basis for the determination of forming limit. The DEFORM-3D software was used to simulate the roll forming of cups. The influence of the billet wall thickness and bottom thickness, coefficient of friction, radius of roller, and the fillet radius of the punch on the forming limit was studied, and the damage value and velocity vector were analyzed. The results showed that the forming limit of the billet's wall thickness in roll forming for a cup is about 62%. With the increase of the ratio of the formed cup's wall thickness to the billet's bottom thickness, the forming limit of wall thickness will be slightly reduced. A larger radius of roller, fillet radius of punch, and friction coefficient between punch and billet and a smaller friction coefficient between roller and billet are good for decreasing the damage value and improving the roll-forming limit. According to the numerical simulation results, the roll-forming limit diagram of cups is established, and the accuracy of the forming limit diagram is verified by experiments.

Keywords: DEFORM-3D; cup; damage value; forming limit; roll forming.