Applications of Frameless Image-Guided Robotic Stereotactic Radiotherapy and Radiosurgery in Pediatric Neuro-Oncology: A Systematic Review

Cancers (Basel). 2022 Feb 21;14(4):1085. doi: 10.3390/cancers14041085.

Abstract

Background: CyberKnife-based robotic radiosurgery (RRS) is a widely used treatment modality for various benign and malignant tumors of the central nervous system (CNS) in adults due to its high precision, favorable safety profile, and efficacy. Although RRS is emerging in pediatric neuro-oncology, scientific evidence for treatment indications, treatment parameters, and patient outcomes is scarce. This systematic review summarizes the current experience and evidence for RRS and robotic stereotactic radiotherapy (RSRT) in pediatric neuro-oncology.

Methods: We performed a systematic review based on the databases Ovid Medline, Embase, Cochrane Library, and PubMed to identify studies and published articles reporting on RRS and RSRT treatments in pediatric neuro-oncology. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied herein. Articles were included if they described the application of RRS and RSRT in pediatric neuro-oncological patients. The quality of the articles was assessed based on their evidence level and their risk for bias using the original as well as an adapted version of the Newcastle Ottawa Quality Assessment Scale (NOS). Only articles published until 1 August 2021, were included.

Results: A total of 23 articles were included after final review and removal of duplicates. Articles reported on a broad variety of CNS entities with various treatment indications. A majority of publications lacked substantial sample sizes and a prospective study design. Several reports included adult patients, thereby limiting the possibility of data extraction and analysis of pediatric patients. RRS and RSRT were mostly used in the setting of adjuvant, palliative, and salvage treatments with decent local control rates and acceptable short-to-intermediate-term toxicity. However, follow-up durations were limited. The evidence level was IV for all studies; the NOS score ranged between four and six, while the overall risk of bias was moderate to low.

Conclusion: Publications on RRS and RSRT and their application in pediatric neuro-oncology are rare and lack high-quality evidence with respect to entity-related treatment standards and long-term outcomes. The limited data suggest that RRS and RSRT could be efficient treatment modalities, especially for children who are unsuitable for surgical interventions, suffer from tumor recurrences, or require palliative treatments. Nevertheless, the potential short-term and long-term adverse events must be kept in mind when choosing such a treatment. Prospective studies are necessary to determine the actual utility of RRS and RSRT in pediatric neuro-oncology.

Keywords: CyberKnife; PRISMA; neuro-oncology; pediatric neuro-oncology; robotic radiosurgery; stereotactic radiosurgery; stereotactic radiotherapy; systematic review.

Publication types

  • Review