A Novel Interval-Valued q-Rung Dual Hesitant Linguistic Multi-Attribute Decision-Making Method Based on Linguistic Scale Functions and Power Hamy Mean

Entropy (Basel). 2022 Jan 22;24(2):166. doi: 10.3390/e24020166.

Abstract

The interval-valued q-rung dual hesitant linguistic (IVq-RDHL) sets are widely used to express the evaluation information of decision makers (DMs) in the process of multi-attribute decision-making (MADM). However, the existing MADM method based on IVq-RDHL sets has obvious shortcomings, i.e., the operational rules of IVq-RDHL values have some weaknesses and the existing IVq-RDHL aggregation operators are incapable of dealing with some special decision-making situations. In this paper, by analyzing these drawbacks, we then propose the operations for IVq-RDHL values based on a linguistic scale function. After it, we present novel aggregation operators for IVq-RDHL values based on the power Hamy mean and introduce the IVq-RDHL power Hamy mean operator and IVq-RDHL power weighted Hamy mean operator. Properties of these new aggregation operators are also studied. Based on these foundations, we further put forward a MADM method, which is more reasonable and rational than the existing one. Our proposed method not only provides a series of more reasonable operational laws but also offers a more powerful manner to fuse attribute values. Finally, we apply the new MADM method to solve the practical problem of patient admission evaluation. The performance and advantages of our method are illustrated in the comparative analysis with other methods.

Keywords: interval-valued q-rung dual hesitant linguistic set; linguistic scale function; multi-attribute decision-making; power Hamy mean operator.