ACAT2 Is a Novel Negative Regulator of Pig Intramuscular Preadipocytes Differentiation

Biomolecules. 2022 Jan 31;12(2):237. doi: 10.3390/biom12020237.

Abstract

Intramuscular fat (IMF) is considered as the fat deposited between muscle fibers. The extracellular matrix microenvironment of adipose tissue is of critical importance for the differentiation, remodeling and function of adipocytes. Therefore, in this study we extracted the muscle tissue centrifugal fluid (MTF) of the longissimus dorsi of Erhualian pigs to mimic the microenvironment of intramuscular pre-adipocytes. MTF of pigs with low intramuscular fat level can inhibit pig intramuscular pre-adipocytes differentiation. Then, proteomics technology (iTRAQ) was used to analyze the MTF with different IMF content, and it was found that individuals with high IMF had low ACAT2 (Acyl-CoA: cholesterol acyltransferases 2) levels, while individuals with low IMF had high ACAT2 levels. Significant changes took place in the pathways involved in coenzyme A, which are closely related to fat and cholesterol metabolism. Therefore, we speculate that ACAT2, as an important element involved in cholesterol metabolism, may become a potential molecular marker for the mechanism of pig intramuscular preadipocytes differentiation. Overexpression of ACAT2 in pig intramuscular pre-adipocytes can inhibit their differentiation, while adding ACAT2 inhibitor avasimibe can rescue the process. Knockdown of srebp2 or ldlr, which are two key genes closely related to ACAT2 and cholesterol metabolism, can inhibit pig intramuscular pre-adipocytes differentiation. Overall, our results suggest that ACAT2 is a novel negative regulator of intramuscular adipocyte differentiation through regulation of pparγ, cebpα signaling and srebp2/ldlr signaling involved in cholesterol metabolism.

Keywords: ACAT2; LDLR; SREBP2; differentiation; microenvironment; pre-adipocytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipocytes*
  • Adipose Tissue* / metabolism
  • Animals
  • Cell Differentiation
  • Lipid Metabolism
  • Muscle, Skeletal / metabolism
  • Muscles / metabolism
  • Swine