Enhanced Cardiac CaMKII Oxidation and CaMKII-Dependent SR Ca Leak in Patients with Sleep-Disordered Breathing

Antioxidants (Basel). 2022 Feb 8;11(2):331. doi: 10.3390/antiox11020331.

Abstract

Background: Sleep-disordered breathing (SDB) is associated with increased oxidant generation. Oxidized Ca/calmodulin kinase II (CaMKII) can contribute to atrial arrhythmias by the stimulation of sarcoplasmic reticulum Ca release events, i.e., Ca sparks.

Methods: We prospectively enrolled 39 patients undergoing cardiac surgery to screen for SDB and collected right atrial appendage biopsies.

Results: SDB was diagnosed in 14 patients (36%). SDB patients had significantly increased levels of oxidized and activated CaMKII (assessed by Western blotting/specific pulldown). Moreover, SDB patients showed a significant increase in Ca spark frequency (CaSpF measured by confocal microscopy) compared with control subjects. CaSpF was 3.58 ± 0.75 (SDB) vs. 2.49 ± 0.84 (no SDB) 1/100 µm-1s-1 (p < 0.05). In linear multivariable regression models, SDB severity was independently associated with increased CaSpF (B [95%CI]: 0.05 [0.03; 0.07], p < 0.001) after adjusting for important comorbidities. Interestingly, 30 min exposure to the CaMKII inhibitor autocamtide-2 related autoinhibitory peptide normalized the increased CaSpF and eliminated the association between SDB and CaSpF (B [95%CI]: 0.01 [-0.1; 0.03], p = 0.387).

Conclusions: Patients with SDB have increased CaMKII oxidation/activation and increased CaMKII-dependent CaSpF in the atrial myocardium, independent of major clinical confounders, which may be a novel target for treatment of atrial arrhythmias in SDB.

Keywords: atrial fibrillation; calcium–calmodulin-dependent protein kinase type II; sarcoplasmic reticulum Ca leak; sleep apnea.