Inhibition of mitochondrial fission protects podocytes from albumin-induced cell damage in diabetic kidney disease

Biochim Biophys Acta Mol Basis Dis. 2022 May 1;1868(5):166368. doi: 10.1016/j.bbadis.2022.166368. Epub 2022 Feb 21.

Abstract

Aims: Identifying the mechanisms that underlie progression from endothelial damage to podocyte damage, which leads to massive proteinuria, is an urgent issue that must be clarified to improve renal outcome in diabetic kidney disease (DKD). We aimed to examine the role of dynamin-related protein 1 (Drp1)-mediated regulation of mitochondrial fission in podocytes in the pathogenesis of massive proteinuria in DKD.

Methods: Diabetes- or albuminuria-associated changes in mitochondrial morphology in podocytes were examined by electron microscopy. The effects of albumin and other diabetes-related stimuli, including high glucose (HG), on mitochondrial morphology were examined in cultured podocytes. The role of Drp1 in podocyte damage was examined using diabetic podocyte-specific Drp1-deficient mice treated with neuraminidase, which removes endothelial glycocalyx.

Results: Neuraminidase-induced removal of glomerular endothelial glycocalyx in nondiabetic mice led to microalbuminuria without podocyte damage, accompanied by reduced Drp1 expression and mitochondrial elongation in podocytes. In contrast, streptozotocin-induced diabetes significantly exacerbated neuraminidase-induced podocyte damage and albuminuria, and was accompanied by increased Drp1 expression and enhanced mitochondrial fission in podocytes. Cell culture experiments showed that albumin stimulation decreased Drp1 expression and elongated mitochondria, although HG inhibited albumin-associated changes in mitochondrial dynamics, resulting in apoptosis. Podocyte-specific Drp1-deficiency in mice prevented diabetes-related exacerbation of podocyte damage and neuraminidase-induced development of albuminuria. Endothelial dysfunction-induced albumin exposure is cytotoxic to podocytes. Inhibition of mitochondrial fission in podocytes is a cytoprotective mechanism against albumin stimulation, which is impaired under diabetic condition. Inhibition of mitochondrial fission in podocytes may represent a new therapeutic strategy for massive proteinuria in DKD.

Keywords: Albuminuria; Diabetic kidney disease; Drp1; Mitochondrial fission; Podocyte.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Albumins / metabolism
  • Albumins / pharmacology
  • Albuminuria / genetics
  • Albuminuria / metabolism
  • Animals
  • Diabetes Mellitus, Experimental* / complications
  • Diabetes Mellitus, Experimental* / genetics
  • Diabetes Mellitus, Experimental* / metabolism
  • Diabetic Nephropathies* / pathology
  • Female
  • Humans
  • Male
  • Mice
  • Mitochondrial Dynamics
  • Neuraminidase / metabolism
  • Podocytes* / metabolism
  • Proteinuria / metabolism
  • Proteinuria / pathology

Substances

  • Albumins
  • Neuraminidase