The relationship between CD204 M2-polarized tumour-associated macrophages (TAMs), tumour-infiltrating lymphocytes (TILs), and microglial activation in glioblastoma microenvironment: a novel immune checkpoint receptor target

Discov Oncol. 2021 Aug 25;12(1):28. doi: 10.1007/s12672-021-00423-8.

Abstract

Background: Tumour associated macrophages (TAMs) and tumour infiltrating lymphocytes (TILs) are considered dominant cells in glioblastoma microenvironment.

Aim: The purpose of this study was to assess the expression of CD204+ M2-polarized TAMs in glioblastomas and their relationship with CD4+TILs, Iba+microglia, and IDH1 mutation. We also exploreed the prognostic value of these markers on the recurrence-free interval (RFI).

Methods: The expressions of CD204+TAMs, CD4+TILs, and Iba1+microglia were quantitively assessed in 45 glioblastomas using immunohistochemistry. Kaplan-Meier analysis and Cox hazards were used to examine the relationship between these factors.

Results: CD204+TAMs were highly expressed in 32 tumours (71%) and the remaining 13 tumours (29%) had reduced expression. CD4+TILs were highly expressed in 10 cases (22%) and 35 cases (77.8%) had low expression. There was an inverse correlation between CD204+TAMs and CD4+TILs, in which 85% of tumours had a high expression of CD204+TAMs and a low expression of CD4+TILs. Nevertheless, there was no significant difference in IDH1 mutation status between the two groups (p = 0.779). There was a significant difference in Iba1+microglial activation between IDH1mutant and IDH1wildtype groups (p = 0.031). For cases with a high expression of CD204+TAMs and a low expression of CD4+TILs, there was a significant difference in RFI after treatment with chemoradiotherapy or radiotherapy (p = 0.030).

Conclusion: Glioblastoma with a dense CD204+TAMs and few CD4+TILs is associated with IDH1wildtype. These findings suggest that TAMs masks tumour cell and suppress T-cell tumoricidal functions via immunomodulatory mechanisms. Blockade of the CD204-TAM receptor may prevent this mechanism and allow the evolution of TILs.

Keywords: CD204; Glioblastoma; Immune check point receptors; Microglial activation; Tumour associated macrophages; Tumour infiltrating lymphocytes.