Measurement error model of the bio-inspired polarization imaging orientation sensor

Opt Express. 2022 Jan 3;30(1):22-41. doi: 10.1364/OE.442244.

Abstract

This article studies the measurement error model and calibration method of the bio-inspired polarization imaging orientation sensor (BPIOS), which has important engineering significance for promoting bio-inspired polarization navigation. Firstly, we systematically analyzed the measurement errors in the imaging process of polarized skylight and accurately established an error model of BPIOS based on Stokes vector. Secondly, using the simulated Rayleigh skylight as the incident surface light source, the influence of multi-source factors on the measurement accuracy of BPIOS is quantitatively given for the first time. These simulation results can guide the later calibration of BPIOS. We then proposed a calibration method of BPIOS based on geometric parameters and the Mueller matrix of the optical system and conducted an indoor calibration experiment. Experimental results show that the measurement accuracy of the calibrated BPIOS can reach 0.136°. Finally, the outdoor performance of BPIOS is studied. Outdoor dynamic performance test and field compensation were performed. Outdoor results show that the heading accuracy of BPIOS is 0.667°.