High-speed measurement of mechanical micro-deformations with an extended phase range using dual-wavelength digital holographic interferometry

Appl Opt. 2022 Feb 10;61(5):B279-B286. doi: 10.1364/AO.443857.

Abstract

The implementation of a digital holographic interferometry setup for high-speed micro-deformation measurement is presented. This proposal uses a dual-wavelength recording strategy to reconstruct micro-deformations up to 4.85 µm with no phase wrapping. The numerical processing required to recover the phase maps containing the information of micro-deformations is carried out in a general-purpose computing on graphics processing unit environment to boost its performance. The method completely processes recorded holograms of 1024×1024pixels in 48 ms, i.e., 21 frames per second (FPS) for a single-wavelength acquisition and 96 ms or 11 FPS for dual-wavelength recordings. The method is experimentally evaluated measuring deformations ranging from 0.033 µm to 4.85 µm with no need for phase unwrapping algorithms for an 8 cm diameter aluminum plate in a 110cm2 field of view.