The role of the endolithic alga Ostreobium spp. during coral bleaching recovery

Sci Rep. 2022 Feb 22;12(1):2977. doi: 10.1038/s41598-022-07017-6.

Abstract

In this study, we explore how the Caribbean coral Orbicella faveolata recovers after bleaching, using fragments from 13 coral colonies exposed to heat stress (32 °C) for ten days. Biological parameters and coral optical properties were monitored during and after the stress. Increases in both, the excitation pressure over photosystem II (Qm) and pigment specific absorption (a*Chla) were observed in the stressed corals, associated with reductions in light absorption at the chlorophyll a red peak (De675) and symbiont population density. All coral fragments exposed to heat stress bleached but a fraction of the stressed corals recovered after removing the stress, as indicated by the reductions in Qm and increases in De675 and the symbiont population observed. This subsample of the experimentally bleached corals also showed blooms of the endolithic algae Ostreobium spp. underneath the tissue. Using a numerical model, we quantified the amount of incident light reflected by the coral, and absorbed by the different pigmented components: symbionts, host-tissue and Ostreobium spp. Our study supports the key contribution of Ostreobium spp. blooms near the skeletal surface, to coral recovery after bleaching by reducing skeleton reflectance. Endolithic blooms can thus significantly alleviate the high light stress that affects the remaining symbionts during the stress or when the coral has achieved the bleached phenotype.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa / metabolism
  • Caribbean Region
  • Chlorophyll A / metabolism*
  • Chlorophyta / growth & development*
  • Coral Bleaching
  • Heat-Shock Response*

Substances

  • Chlorophyll A