Mesoscale perspective on the Tolman length

Phys Rev E. 2022 Jan;105(1-2):015301. doi: 10.1103/PhysRevE.105.015301.

Abstract

We demonstrate that the multiphase Shan-Chen lattice Boltzmann method (LBM) yields a curvature dependent surface tension σ as computed from three-dimensional hydrostatic droplets and bubbles simulations. Such curvature dependence is routinely characterized, at first order, by the so-called Tolman length δ. LBM allows one to precisely compute σ at the surface of tension R_{s} and determine the Tolman length from the coefficient of the first order correction. The corresponding values of δ display universality for different equations of state, following a power-law scaling near the critical temperature. The Tolman length has been studied so far mainly via computationally demanding Molecular Dynamics simulations or by means of Density Functional Theory approaches playing a pivotal role in extending Classical Nucleation Theory. The present results open a hydrodynamic-compliant mesoscale arena, in which the fundamental role of the Tolman length, alongside real-world applications to cavitation phenomena, can be effectively tackled. All the results can be independently reproduced through the "idea.deploy" framework.