Protective Effect of Curcumin against Doxazosin- and Carvedilol-Induced Oxidative Stress in HepG2 Cells

Oxid Med Cell Longev. 2022 Feb 11:2022:6085515. doi: 10.1155/2022/6085515. eCollection 2022.

Abstract

Doxazosin and carvedilol have been evaluated as an alternative treatment against chronic liver lesions and for their possible role during the regeneration of damage caused by liver fibrosis in a hamster model. However, these drugs have been reported to induce morphological changes in hepatocytes, affecting the recovery of liver parenchyma. The effects of these α/𝛽 adrenoblockers on the viability of hepatocytes are unknown. Herein, we demonstrate the protective effect of curcumin against the possible side effects of doxazosin and carvedilol, drugs with proven antifibrotic activity. After pretreatment with 1 μM curcumin for 1 h, HepG2 cells were exposed to 0.1-25 μM doxazosin or carvedilol for 24, 48, and 72 h. Cell viability was assessed using the MTT assay and SYTOX green staining. Morphological changes were detected using the hematoxylin and eosin (H&E) staining and scanning electron microscopy (SEM). An expression of apoptotic and oxidative stress markers was analyzed using reverse transcription-quantitative PCR (RT-qPCR). The results indicate that doxazosin decreases cell viability in a time- and dose-dependent manner, whereas carvedilol increases cell proliferation; however, curcumin increases or maintains cell viability. SEM and H&E staining provided evidence that doxazosin and carvedilol induced morphological changes in HepG2 cells, and curcumin protected against these effects, maintaining the morphology in 90% of treated cells. Furthermore, curcumin positively regulated the expression of Nrf2, HO-1, and SOD1 mRNAs in cells treated with 0.1 and 0.5 μM doxazosin. Moreover, the Bcl-2/Bax ratio was higher in cells that were treated with curcumin before doxazosin or carvedilol. The present study demonstrates that curcumin controls doxazosin- and carvedilol-induced cytotoxicity and morphological changes in HepG2 cells possibly by overexpression of Nrf2.

MeSH terms

  • Apoptosis / drug effects
  • Carvedilol / toxicity*
  • Cell Membrane Permeability / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Curcumin / pharmacology*
  • Doxazosin / toxicity*
  • Gene Expression / drug effects
  • Hep G2 Cells
  • Hepatocytes / drug effects
  • Hepatocytes / metabolism
  • Hepatocytes / ultrastructure
  • Humans
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism
  • Oxidative Stress / drug effects*
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / metabolism

Substances

  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • Proto-Oncogene Proteins c-bcl-2
  • Carvedilol
  • Curcumin
  • Doxazosin