Superior thermoelectric properties of ternary chalcogenides CsAg5Q3 (Q = Te, Se) predicted using first-principles calculations

Phys Chem Chem Phys. 2022 Mar 2;24(9):5729-5737. doi: 10.1039/d1cp05796k.

Abstract

Tailoring novel thermoelectric materials (TEMs) with a high efficiency is challenging due to the difficulty in realizing both low thermal conductivity and high thermopower factor. In this work, we propose ternary chalcogenides CsAg5Q3 (Q = Te, Se) as promising TEMs based on first-principles calculations of their thermoelectric properties. Using lattice dynamics calculations within self-consistent phonon theory, we predict their ultralow lattice thermal conductivities below 0.27 W m-1 K-1, revealing the strong lattice anharmonicity and rattling vibrations of Ag atoms as the main origination. By using the mBJ exchange-correlation functional, we calculate the electronic structures with the direct band gaps in good agreement with experiments, and evaluate the charge carrier lifetime as a function of temperature within the deformation potential theory. Our calculations to solve Boltzmann transport equations demonstrate high thermopower factors of 2.5 mW m-1 K-2 upon p-type doping at 300 K, comparable to the conventional dichalcogenide thermoelectric GeTe. With these ultralow thermal conductivities and high thermopower factors, we determine a relatively high thermoelectric figure of merit ZT along the z-axis, finding the maximum value of ZTz to be 2.5 at 700 K for CsAg5Se3 by optimizing the hole concentration. Our computational results highlight the great potentiality of CsAg5Q3 (Q = Te, Se) for high-performance thermoelectric devices operating at room temperature.