Whole-exome Sequencing Analysis of a Japanese Patient With Hyperinsulinemia and Liver Dysfunction

J Endocr Soc. 2022 Jan 29;6(3):bvac008. doi: 10.1210/jendso/bvac008. eCollection 2022 Mar 1.

Abstract

Hyperinsulinemia is often observed in obese subjects because of insulin resistance, but it may occur in nonobese subjects with unknown etiology. A 72-year-old man was admitted to our hospital for the examination of hyperinsulinemia, reactive hypoglycemia, and liver dysfunction. The patient's body mass index was 23.7 kg/m2, but he had an elevated visceral fat area (125 cm2). His laboratory data showed mildly elevated liver enzymes, whereas plasma fasting glucose and serum insulin levels were 91 mg/dL and 52.3 μU/mL, respectively. In a 75-g oral glucose tolerance test, the serum insulin level reached the highest value of 1124 μU/mL at 180 minutes. There was no obvious etiology except for mild liver steatosis shown by liver biopsy. We suspected genetic abnormalities related to hyperinsulinemia. We performed whole-exome sequencing (WES) analyses and identified a heterozygous nonsense variant p.R924X in the insulin receptor (INSR) gene, a novel heterozygous missense variant p.V416M in the AKT1 gene, and a novel hemizygous missense variant p.R310Q in the PHKA2 gene, which is the causative gene of hepatic injury as glycogen storage disease type IX. It was speculated that the INSR gene variant, in addition to visceral fat accumulation, was the main cause of hyperinsulinemia and reactive hypoglycemia, and the remaining 2 variants were also partly responsible for hyperinsulinemia. WES analysis revealed candidate gene variants of hyperinsulinemia and hepatic-type glycogenosis. Thus, WES analysis may be a useful tool for clarifying the etiology when unexplained genetic pathophysiological conditions are suspected.

Keywords: glycogen storage disease; hyperinsulinemia; insulin receptor gene; whole exome sequencing.

Publication types

  • Case Reports